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By Robert D. Witcofski and Arthur Henderson, Jr.
SUMMARY

A systematic investigation of induced pressures has been made at a
free-stream Mach number of 17 and 21 in helium flow on six pairs of
axlally symmetric, flow-alined, cylindrical models in order to determine
the range of validity of the nose-shape-independence concept of the
blast-wave theory. Each model of a pair had the same nose-drag coeffi-
cient but different nose shapes. Nose-drag coefficient varied from 0.2
to 1.2. It was found that, within the range of nose shapes and nose
drags investigated, induced pressures are functions of nose drag only
and are independent of nose shape for axial stations beyond about 1 body
diameter downstream of the nose-cylinder Junction.

Two blast-wave theories identified as "modified" and "correlated"
theories, adequately predicted the induced pressures for nose-drag coef-
ficients above about 0.6 and 0.8, respectively. The adequacy of these
theories decreased with decreasing nose drag. Despite the inadequacy
of the blast-wave theory to predict these induced pressures in the low-
nose-drag range, the parameters developed in the theory in which Mach
number was assumed constant correlated the data very well at stations
beyond 2.5 body diameters from the nose-cylinder Junction, for all the
nose drags investigated. The blast-wave parameter 1in which effect of
Mach number was included correlated all the data fairly well, the data
being subject to a slight Mach number effect beyond that predicted by
blast-wave theory. The only requirement for correlation of the data by
the blast-wave parameter was that M, sin ¢ (M00 is free-stream Mach
number; ¢ 1s semivertex angle of nose) be greater than some limiting
value, which for the present investligation was shown to be probably less
than 5.



INTRODUCTION

Since the introduction of the concept of blast-wave theory as
applied to aerodynamics (refs. 1 to 3), considerable effort has been
expended in evaluating its adequacy for the prediction of induced pres-
sures behind blunt noses. (See, for instance, refs. 4 to 12.)

The assumptions upon which blast-wave theory 1s based are such that
its results are apparently applicable over a very limited range in the
induced pressure region behind blunt noses. The theory assumes a strong
shock in the vicinity of the body. However, since it is also assumed
that the square of the tangent of the shock angle is approximately equal
to the square of the sine of the shock angle (see ref. 7), the shock
cannot be too strong. Thus, the results of the theory are invalid near
the nose of the blunt body, where the shock is very strong, and far
downstream, where the shock strength deteriorates. Also, because of
the assumption of a strong shock, blast-wave theory would not be expected
to apply anywhere on bodies with low nose-drag coefficients. Nonetheless
it 1s shown in references 4, 5, and 7 that at hypersonic Mach numbers and
zero angle of attack, the blast-wave parameter correlates the theoretical
inviscid induced pressures on high-nose-drag, two-dimenslional flat plates
everywhere except very close to the nose. The theoretical pressures were
obtained by the method of characteristics with the leading edge assumed
to be a sonic wedge; the nose-drag coefficients were on the order of 1.3
to 1.k,

In reference 10 the axisymmetric method of characteristics was
employed to calculate the theoretical inviscid induced pressures on
cylindrical rods with various nose shapes at hypersonic speeds. In the
case of reference 10 the nose-drag coefficients varied from about 0.0k
to 1.37. The blast-wave parameter correlated the pressure distributions
to within a few body diameters of the nose-cylinder junction for all but
the lowest nose-drag coefficient investigated.

In reference 8 the induced pressures on cylindrical, flow-allned
rods with six different nose shapes were obtained experimentally at a
Mach number of 21L. The nose-drag coefficlents varied from 0.32 to 1.76.
The blast-wave theory was inadequate for predicting the induced pressures
except in very limited regions as would be expected; however, the blast-
wave parameter correlated the induced-pressure data very well along the
cylindrical afterbody except close to the nose for all the nose-drag
coefficients investigated.

The aforementioned investigations have indicated that the blast-
wave theory furnishes a good correlating parameter the usefulness of
which extends over a much wider range of nose drags than the assumptions
upon which this theory is based would appear to warrant. Also, Inherent
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in the nose-drag dependence is the implication that induced pressures
are independent of nose shape.

In the present paper, the range of validity of the nose-shape-
independence concept 1s investigated experimentally in a systematic
manner for the axisymmetric case. Preliminary results of this investi-
gation were included in references 9 and 12. Six pairs of pressure-
distribution models were tested. Both models of each palr had the same
nose-drag coefficients but different nose shapes. The nose-drag coeffi-
cients were 0,2, 0.4, 0.6, 0.8, 1.0, and 1.2. Tests were conducted at
nominal free-stream Mach numbers at the model nose of 17.24 and 21.09
with Reynolds numbers based on body diameter and free-stream conditions
at the nose of 1.2 x 109 and 0.87 x 102, respectively.

The correlation of the induced pressure 1s investigated by use of
a blast-wave parameter based only on the nose-drag coefficlent (Mach
number constant) as well as by a blast-wave parameter which includes
both nose drag and Mach number effects.

SYMBOLS
A surface area of model nose, sgq in.
Cp drag coefficient
Cp,n nose-drag coefficient
Cp pressure coefficient
Cp’c cone pressure coefficient
Cp,max maximum nose pressure coefficlent
d diameter of nose sphere segment, in.
D maximum cross-sectional diameter of body, in.
A axial length of nose section, in.
My free-stream Mach number
o) corrected static pressure, 1b/sq in. abs (see eq. (8))

Pm measured static pressure, 1b/sq in. abs



Pg static pressure at point of Jjunction of nose and cylinder,
1b/sq in. abs

free-stream static pressure, 1b/sq in. abs

poo
Po.1 local free-stream static pressure, lb/sq in. abs
7
Po.n free-stream static pressure at the apex of the nose,

’ 1b/sq in. abs

X,¥Y Cartesian coordinates (x 1is distance along axis of symmetry),
in.

Xn axial distance measured from nose apex, in.

Xg axial distance measured from junction of nose section and

cylindrical afterbody, in.

o} semivertex angle of nose, deg
0 angle between model x-axis and local surface of nose
n ratio of induced pressure at infinity divided by the free-

stream pressure
MODELS

S8ix pairs of models (fig. 1) were used in the investigation. The
models were 0.125-inch-diameter cylinders approximately 5 inches long
with various nose shapes. Pressures were measured at each of seven
longitudinal orifice locations from about 0.2 to 20 body diameters behind
the nose-cylinder junction. Both models of each pair were designed to
have the same nose-drag coefficient. These coefficients were chosen to
be Cp,n = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2. One model of each pair

had a conical nose, the drag coefficients of which were determined
directly from cone calculations (ref. 13) since

Cp,n = Cp,c (1)

A plot of Cp,C as a function of the semivertex cone angle o 1s shown

in figure 2. This curve is applicable for both M, = 17 and 21, inas-
much as the difference between pressure coefficients at the two Mach
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numbers for any of the cone angles used in this investigation never
exceeded 0.5 percent.

The second model of each pair was contoured and its shape was
determined from the equation

4
CD,n = — Cp sin 6dA (2)

D YA

for each of the specified values of CD,n' The configurations for the

three highest drag coefficients had noses which were portions of spheres
and for these cases the pressure-coefficient distribution was obtained
from modified Newtonian theory (ref. 14). The other three configura-
tions had pointed noses and the pressure-coefficient distributions on
them were determined from the generalized Newtonian theory of refer-
ence 15. It is recognized that Newtonian theory is generally inadequate
in the region of the nose-cylinder Junction at hypersonic Mach numbers.
However, this should have little effect on the integrated nose drag,
since the greatest deficiency of the theory occurs in the region of
small to zero slope.

The shapes chosen for the contoured noses with Cpp = 1.2 and 1.0

were spherical segments, for which case

C D
Co,n = 22222 - (3) (3)

with Cp max = 1.76, and % = 1.254 and 1.076 for Cp,n = 1.2 and 1.0,

respectively. For CD,n = 0.8, a spherically capped cone was chosen
for which

c 2
Cp,n = _P_;;{ﬂﬁ[e sin®9 + (%) cos™e (4)

with Cp max = 1.76 and 6 = 15°, % = 0.943. The pointed contoured

shapes were taken to be of the form



Y=§( 22<.> (5)

where Y = %, X= %, and L = %. For this case
°D,n 2 2 of 2 12 +1
—2— =L + 1}}2L +1-2L(L +l)loge——2—- (6)
Cp,max L

This equation was solved graphically for the variation of CD n with L.
J

CD,n

Figure 3 is a plot of against L as glven by equation (6). The

Cp,max
variation of the semlvertex angle o with L was found from

- -1{dY - -11
o = tan (dx)x tan = (7)

and is shown in figure 4, The variation of Cp,max with L 1s deter-
mined from figures 2 and 4. Substituting various combinations of Cp,max
and L into equation (6) glves the variation of Cp,n with L shown

in figure 5. The geometric nose shape was found by substituting the
value of L for the desired Cp,, 1nto equation (5).

INSTRUMENTATION AND ACCURACY

Supply pressures were measured on a bourdon gage with an accuracy
of 0.5 percent. Static pressures were measured on a U-tube butyl
phthalate manometer, The reference pressure on the manometer was
malntained at less than 20 microns of mercury. The estimated accuracy
of the measured static pressures was 30.0007 lb/sq in, The estimated
accuracy of the tunnel Mach number was about *1.,0 percent.

TESTS

All tests were performed in the Langley 2-inch helium tunnel
(ref. 6) with the models alined along the axis of the tunnel at zero
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angle of attack and zero yaw. From pitot-pressure calibrations and use
of the real-gas correction factors from reference 16, it was determined
that the tests were performed with free-stream Mach numbers at the nose
of the models of 17.24k and 21.09; corresponding test Reynolds numbers
based on maximum body diameter and free-stream conditions at the nose
were 1.2 X 10° and 0.87 x 105, respectively. Pressures were obtained
at stations from 0.2 diameter to 20 diameters behind the nose-cylinder
Junction.

The small size of the models permitted pressure measurements at
only one orifice station per test. Thus, after the pressure at an
orifice was measured, this orifice was closed with solder, the body was
faired to its original contour, and a new orifice was drilled. All
orifices were 0.020 inch in dlameter. The surface static pressures were
recorded manually at the steady-state condition which was usually obtalned
about 90 to 120 seconds after initlation of the test.

The 2-inch helium tunnel utilizes a conical nozzle. In order to
correct for conical flow effects, the buoyancy correction method dis-
cussed in references 8 and 9 was applied to the induced pressure data.
Thus, the data are presented as

+ -
» _Pn*(Pen " o) (8)
poo poo’n

RESULTS AND DISCUSSION

The induced pressure data are presented in figures 6 and 7 for
M, = 17.24 and 21.09, respectively, with p/p, as a function of xg/d.

Tt can be seen that for a constant nose drag and Mach number the induced

X x
pressures | except at 7;-= 0.2 and in some cases at 7§-= 1) are essen-

tially independent of nose shape, in accordance with tne implications
of blast-wave theory. Also shown on the plots are two theoretical curves.,
The correlated blast-wave theory i1s from reference 10 and is given by

Mo
pi = 0.075 _Ex 22+ 0.55 (9)



This equation was obtained by correlating the theoretical induced pres-
sures on rods with various nose shapes and free-stream Mach numbers as
obtained by characteristics calculations against the blast-wave param-
eter, and fitting a curve to the correlated characteristic results.

The modified blast-wave theory 1ls from reference 11 with an addi-
tional modification to account for the induced pressure levels far
downstream which approach greater than free-stream values. ({See ref. 8.)
The equation for these curves is

PS/

- 5"

P

bPg /D 1 ®

fg:__..s/w +n(1+ ) (10)

where 1 1is the ratio of the induced pressure at infinity divided by the
free-stream pressure. Equation (10) is equivalent to that given in refer-
ence 11 when 1 = 1. The value of Pg /P, Was chosen so that the curve

passed through the mean of the experimental values of p/p°° at
b'e
1; = 2.5, since (as will be shown subsequently) the data were well

correlated by the blast-wave parameter beyond this point. The value
of n was determined by trial and error under the condition that the
curve be in good agreement with the experimental value of p/poo at

% = 20. (It is shown in ref. 8 that induced pressures are essentially

independent of nose shape beyond % = 20, at least for M, = 21.) The

values of 17 were thus determined to be 1.26 for all models at
Mo = 17.24 and 1.85 for all models at M, = 21.09. Thus n 1is a

function of Mach number or Reynolds number or both.

An examination of figures 6 and 7 reveals that equation (9)
(correlated blast-wave theory) is in falr agreement with experiment for
the larger values of Cp,p, whereas equation (10) (modified blast-wave

theory) gives good agreement for the larger values of Cp,n> and the
agreement extends to slightly smaller values of CD,n than equation (9).

As expected, equation (10) gives better agreement inasmuch as it takes
into account viscous effects by utilizing two empirical points

4
tion (10) is seen to deteriorate with decreasing Cp n.

X X
£ = 2.5 and 1% = 20). The adequacy of both equation (9) and equa-
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Despite the inadequacies of the blast-wave theories (egs. (9) and
(10)) for predicting induced pressures in certain regions, the blast-
wave parameter is very useful for correlating data, as may be seen from
the results presented in figures 8 and 9.

In figures 8(a) and (b) the pressure data are plotted against
xg/d

UCD,n
and 21.09, respectively. The induced pressures for all nose drags and

shapes are seen to correlate with this parameter for xs/d greater
than 2.5.

(the blast-wave parameter for constant Me) for M, = 17.2k4

Also shown in figures 8(a) and (b) are curves calculated by equa-
tions (9) and (10) (refs. 10 and 11, respectively). The calculation by
equation (10) is shown for the case where Cp,n = 1.0, since this nose

shape most closely corresponds to the leading edge for which equa-
tion (10) was proposed in reference 11.

Figure 9 is a plot of the induced pressure ratio as a function of
the blast-wave parameter in which Mach number effects are included. In
figure 9(a) the orifice locations are measured from the nose-cylinder
Junction and in figure 9(b) they are measured from the nose. The form
of data presentation in figure 9(b) is used because the theoretical
curve (eq. (9)) was obtained in reference 10 by assuming orifice loca-
tions measured from the nose. The data in this figure are well corre-
lated by the blast-wave parameter at stations beyond xg/d of about 2.5.
Whether the method of 9(a) or 9(b) is to be preferred appears to be a
matter of choice. A comparison of figures 8 and 9 indicates better
correlation of the data with nose drag at constant Mach number than
with both nose drag and Mach number effects included, the data being
subject to a slight Mach number effect beyond that predicted by the
blast-wave parameter,

Again, equations (9) and (10) (refs. 10 and 11, respectively) are
shown in figures 9(a) and (b). As in the case of figures 8(a) and (b),
the calculation by equation (10) (ref. 11) is for the case where
CD,n = 1.0. As was previously mentioned, the fact that the method of

reference 11 gives better agreement with the data 1s due largely to the
use of emplrical end points.

Flgure 10 shows a comparison of the results of the present inves-
tigation with those obtained in reference 8. The slight displacement
of the data may possibly be attributed to Reynolds number. Reynolds
numbers based on body diameters for the present investigation and that
of reference 8 were, for M, =~ 21, 0.87 x 102 and 0.62 x 102,
respectively.
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Since the blast-wave theory required a strong shock, it is, at
first glance, surprising that the parameter developed in the theory is
useful for correlating the data for a drag coefficlent as low as 0.2.
However, it has been pointed out in reference 17 that the assumption of
a strong shock implies that M» sin o >> 1. The information contained
in reference 13 can be utilized to show that for cones in helium flow

M""’\jCD,n

Mo sin o =
1.49

From this equation it is seen that the lowest value of My sin o
attained in these tests was 5.1. Although 5.1 is not an order of
magnitude greater than 1, it is apparently sufficient for the correla-
tion of data by the blast-waeve parameter. It is probable that the nose-
shape-independence concept will hold for values of Me sin ¢ somewhat
less than 5. The lower limit can only be determined by additional
experiment.

Thus, although the blast-wave theories of references 10 and 11
(egs. (9) and (10)) require a high nose-drag coefficient, the parameters
developed in the theories will correlate data provided only that
M, sin ¢ be greater than some limiting value, which as shown above is
probably less than 5.

CONCLUSIONS

The range of validity of the nose-shape-independence concept of
the blast-wave theory has been investigated in a systematic manner by
the use of six pairs of pressure models. Induced.pressure distributions
were obtained at zero angle of attack with free-stream Mach numbers of
about 17 and 21. Each model of a pair had the same nose-drag coeffi-
cient, but different nose shapes. Nose-drag coefficient varied from 0.2
to 1.2. As a result of these tests, the following conclusions were
drawn.

1. Within the range of nose shapes and drags investigated, induced
pressures are, in general, functlons of nose drag only and appear to be
independent of nose shape at stations beyond about 1 body diameter down-
stream of the nose-cylinder junction.

2. At constant Mach number, the blast-wave parameter correlates
the dats well for all nose drags at stations beyond 2.5 body diameters
from the nose-cylinder Jjunction,

\O O\
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3. The blast-wave parameter that includes Mach number effect is
helpful in correlating the data. However, a slight Mach number effect
beyond that predicted by blast-wave theory is indicated.

4, Both a modified and a correlated blast-wave theory adequately
predict the induced pressures for nose-drag coefficients above about 0.6
and 0.8, respectively. At lower nose-drag coefflcients these theories
are inadequate.

5. Although the blast-wave theorles of Vernon Van Hise (NASA
TR R-78) and of E. S. Love (ARS Jour., Oct. 1959) require a high nose-
drag coefficient, the parameters developed in the theories appear to
correlate data provided only that the product of the Mach number and
the sine of the semivertex cone angle be greater than some limiting
value, which for the present investigation is indicated to be less
than 5.

Langley Research Center,
National Aercnautics and Space Administration,
Langley Air Force Base, Va., March 7, 1962.
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Figure 2.- Variation of cone pressure coefficient with cone semlangle.

10

30



16

CD,n / Cp,max

50
48
46
44
42
40
28

36
8

N

.

1O

12

.4

16

20

1~-1529

L

Figure 3.~ Variation of ratio of nose-drag coefficient to maximum pres-
sure coefficient on sharp-nose bodies with length-diameter ratio L
(from eq. (6)).
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Figure 6.- Continued.
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